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Introduction
● Problem: Data-driven research is in need of a secure way to 

protect sensitive data to release for public use
● Previously used data protection methods contain vulnerabilities

○ E.g. cross-referencing of external data sources to re-identify data

● Differential Privacy (DP) aims to solve this problem
○ Add random “noise” to blur results of statistical queries

● Apply DP to other types of supercomputer sensors
● Test other DP algorithms on this data

○ Exponential Mechanism
● Explore ε values for appropriate protection of these 

different types of sensors and mechanisms
● Synthesize datasets by sampling protected histograms

○ Synthetic data can be queried without privacy-loss budget
○ Compare accuracy of analysis to unprotected data

● Potential work with vendors to satisfy NDA’s for data 
sharing

Future Work
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Experimental Setup

● Focused on CPU temperatures
● Easy enough to explain, compared to 

other more complicated sensors
● Sensitive enough to possibly infer 

jobs running on the system

● Apply DP to supercomputer sensor data
● To the best of our knowledge, has never 

been implemented for this domain of data
● Used sensor data from the Trinitite system
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● Sample DP noise from Laplace PDF
● Laplace width affects noise sampling

○ Wide: more random (privacy)
○ Narrow: more deterministic (accuracy)

● (GS / ε) is used to scale the width

Results

● A smarter approach: Cross Tabulation
● Only ask one query about all groups (divide ε by 1)
● Our cross tabulation results with ε set to 1 and .5  insist 

that we should use .5 instead because it has similar 
accuracy to 1, but leaks less sensitive information

Cross Tabulation by Slot and Temp.

● Illustrates the simplest case of 
protecting CPU temperature data

● We observe that the smaller ε gets, 
the more the protected results deviate

● Not a very robust query if we cant 
analyze aggregate information by 
group (location)

Histogram Query

● One approach to protecting aggregate information is 
by exhaustively asking a query for each group

● ε must be divided for each query, making results for 
more granular groups very inaccurate

● We see an example of this drop in accuracy when 
grouping histograms by rack, chassis (divide ε by 5)

Histograms by Rack, Chassis

● Two-World Privacy
○ Goal: make the results of a query on two datasets, with the presence 

and absence of any record, indistinguishable from one another.

● Privacy-Loss Budget
○ Quantifies and bounds how much sensitive information can be leaked
○ Trade-off between privacy and accuracy

● Global Sensitivity (GS) of a Query
○ Max difference of query results on any possible ‘Two-World’ datasets

Differential Privacy


